Arithmetic Dynamics

نویسنده

  • NIKITA SIDOROV
چکیده

This survey paper is aimed to describe a relatively new branch of symbolic dynamics which we call Arithmetic Dynamics. It deals with explicit arithmetic expansions of reals and vectors that have a “dynamical” sense. This means precisely that they (semi-) conjugate a given continuous (or measure-preserving) dynamical system and a symbolic one. The classes of dynamical systems and their codings considered in the paper involve: • Beta-expansions, i.e., the radix expansions in non-integer bases; • “Rotational” expansions which arise in the problem of encoding of irrational rotations of the circle; • Toral expansions which naturally appear in arithmetic symbolic codings of algebraic toral automorphisms (mostly hyperbolic). We study ergodic-theoretic and probabilistic properties of these expansions and their applications. Besides, in some cases we create “redundant” representations (those whose space of “digits” is a priori larger than necessary) and study their combinatorics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes

The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du  dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...

متن کامل

FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations

In this project we explore the capability and flexibility of FPGA solutions in a sense to accelerate scientific computing applications which require very high precision arithmetic, based on IEEE 754 standard 128-bit floating-point number representations. Field Programmable Gate Arrays (FPGA) is increasingly being used to design high end computationally intense microprocessors capable of handlin...

متن کامل

Robustness of symbolic dynamics

In this paper we introduce the method for investigation of coupled chaotic systems using topological methods. We show that if the coupling is small then there exists independent symbolic dynamics for every coupled subsystem and in consequence the systems are not synchronized. As an example we consider coupled H enon maps. Using computer interval arithmetic we nd parameter mismatch and perturbat...

متن کامل

Bibliography for Arithmetic Dynamical Systems

This document lists a wide variety of articles and books in the area of arithmetic dynamics. It also includes some additional material that was referenced in The Arithmetic of Dynamical Systems (Springer-Verlag GTM 241) and some miscellaneous articles and books that I’ve referenced in my own work. Note that the numbering in this document does not match the numbering of references in GTM 241. Fu...

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002